
1

A Form-based Approach
for Web Services

by Enduser-Initiative
Application Development

Takeshi CHUSHO, Katsuya FUJIWARA,
Hisashi ISHIGURE and Kei SHIMADA
Department of Computer Science
Meiji University
Kawasaki, Japan
chusho@cs.meiji.ac.jp

Background of Research (1)

◆ Trend
　The number of end-users using the Internet
increases on the inside and outside of offices.

◆ Goal
　Applications for web services should
be supported by business professionals
because web services must be modified
frequently.

Background of Research (2)
◆ Approach
・ Form-based end-user computing
・ Primary target domain : local areas

C2D (Client to Department)
D2D (Department to Department)

・ Applied technologies:
* Component-Based Software Engineering
* Multi-agent systems

Basic Concepts for Web Services

◆ Rapid development and continuous variation :
・ Business on Internet, is rapidly changed,
・ The period from defining a new business model

through releasing new services, must be short.

◆ End-user initiative development :
・ For “just-in-use”
・ Development by system engineers

is not suitable.

Domain Model
(Application)

Components
(Business objects)

GranularityGranularity
GapGap

End-users
(Business professionals)

SemanticSemantic
GapGap

Business

Service

Software

Frameworks

Patterns

Agents

Enduser-Initiative Approach
- how to make web applications supporting web services -

The business model

is proposed by

domain experts.

Metaphors for Web Services
- Window work -

◆ Target Domain
・ A typical distributed system : window work
・ This is not limited to the actual window work.

(Ex.) SCM can be considered as
combination of the virtual window work.

◆ Problems
・Conventional systems

by IT professionals
are expensive.

・It is difficult
to modify software timely.

Metaphors for Web Services Protocol
- Forms -

・ Window work is considered as service requests
between clients and service providers.

・ Forms are considered as the interface.
・Our concept : "One service = One form"

Our actual XML-base protocol of { who, what, how }
corresponds to

the UDDI protocol of { white, yellow, green } pages.

Who; What; How

Application Architecture
- For Agent-based applications -

A multiagent-oriented office network (MOON)

S e curity S e rve r

Tra ns a c tion S e rve r

Form S e rve r

Dire c tory S e rve r

S e rve rs

a t Hom e
PCs

Unive rs ityC ity O ffice Tra ve l Age nt
Ma il-o rde r C o .

Clie nts

S e rve r-at-w in do w s

In te rn e t

Broker
Agent

Mobile
Agent

Expert Agents

Client
Agents

a t O ffice O utdoorsin Town
PDAsPCs / WSs

Public Telephones

Server-at-windows with expert agents

Client terminals with client agents MOON servers

The MOON Servers

(1) A directory server with a broker agent :
manages service directories of windows.

(2) A form server with a mobile agent :
manages forms with help messages.

(3) A transaction server :
manages written applications
with ID numbers.

(4) A security server :
controls access rights.

Security Server

Transaction Server

FormServer

Directory Server

Servers

at Home
PCs

UniversityCity Office Travel Agent
Mail-order Co.

Clients

Server-at-windows

Inte rnet

Broker
Agent

Mobile
Agent

Expert Agents

Client
Agents

a t Office Outdoorsin Town
PDAsPCs / WSs

Public Telephones

Our Experiences of Prototyping

◆ The actual system configuration is
the 4-tier architecture

Browsers
Web

servers
Application

servers
DB

servers

The front end is
supported by
application frameworks

and multi-agents.

The back end is
supported by

domain modeling and
business objects.

Features of Agent-based Applications
as Front End (1)

◆　Form processing is navigated by agents :
・ Clients can teach the fixed operations

such as their names and addresses
to their agents.

・ Domain experts can teach
their expertise to their agents.

Features of Agent-based Applications
as Front End (2)

◆　Standardization of ACL
for communication between client agents
and expert agents.

ACL : Agent Communication Language
FACL : Form-based ACL

Who; What; How

The Basic Form of Web Service Interface

◆　Messages of requests to windows :
・ Who receives your request ?
・ What do you request to the window ?
・ How do you request it ?
・ Which is your request ?
<Note> wwHww : who-what-how with WWW

◆ The basic form : (who, what, how, which)

Who; What; How

The Semantics of the Protocol
◆ Message passing of OOP

・ who : A message receiver object
・ what : A method name
・ how : Parameters for a method invocation
・ which : A message number

◆ FACL
・ who ： A window
・ what ： Title of the application form.
・ how ： Contents of the application form
・ which ： A receipt number

◆ Difference : In FACL,
an unknown value of a parameter
implies an inquiry about the parameter.

End-User Interface (1)
◆　The basic form notation
a, b, ... : Parameters with known values.
?a, ?b, ... : Inquiries about the parameters,

which request help messages.
x, y, ... : Parameters without values.
?x, ?y, ... : Inquiries about the parameters,

which request possibles for selection.
◆　Examples
(a, b, c, x)

The application, b, with the contents, c, is sent to
the window, a. A message number will be assigned
to the variable, x, by the window.

(a, b, c, x)

End-User Interface (2)
◆　Examples of inquiries
(a, b, , ?d) : The state is inquired.
(a, b, ?x,) : The application form, b, is displayed.

How to fill in the form is navigated by the
expert agent. Some typical items are filled
automatically by the client agent.

(a, ?x, ,) : The title list of all application forms
which the window, a, receives, is displayed.

(?x, ?y = (a list of keywords), ,) :
The list of titles of all application forms which
relate to the list of keywords, is displayed.

(a, b, c, d)

End-User Interface (3)
◆　Examples of inquiries
(?a, , ,) : The explanation on the work of

the window, a, is displayed.
(a, ?b, ,) : The explanation on the application form,

b, to be sent to the window, a, is displayed.
(a, b, c, d)

◆ Comparison with UDDI
These inquiries must be simpler for end-users.

<FACL> : <UDDI>
who ： a white page
what ： a yellow page
how : a green page

The First Application
- A library system in our laboratory -

・ There are no librarians.
・ It is easy to know

who borrowed a book
because everyone fills
in a form when taking out.

・ It is easy to know
whether a book has been
already registered or not
because everyone fills in
an form after he or she
bought the book.

The wwHww browser
at a client terminal

The wwHww
Browser

The what-parameter

The how-parameter

The who-parameter

The Software Architecture
◆ Application framework

・ A client / server model
・ The wwHww browser has two subsystems
・ The wwHww server has three subsystems

An Application Building Procedure

(1) Service definitions :
Services at the window, are defined.

(2) Form definitions :
Electronic forms for these services are
defined while embedding
navigation information.

(3) Registration :
These definitions are registered
into the corresponding servers.

The Browser for System Definitions

(2) Form
definitions

(3) Registration

(1) Service definitions

Examples of XML-base Navigation

◆ Intelligent navigation by agents
・ The meta data for a window is described

in an RDF style.
< RDF : Resource Description Framework >

・ While forms are defined in HTML
in the conventional way,
the semantics of forms are defined
in an RDF style.

・ FACL messages are described in XML.

Meta Data Definition for a Window
- An example of a library (part) -

<!DOCTYPE RDF [<!ENTITY site 'http://se.cs.meiji.ac.jp'>] >
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-……"

xmlns:d="http://purl.org/dc/elements/1.1/"
xmlns:w="http://wwhww.org/1.0/">

<w:Agent rdf:about="&site;/ library /">
<d:Title>Library</d:Title>
<d:Description>The library system of SElab.</d:Description>
<d:Text>Lib. of lab.
Book take-out service</d:Text>
<w:name>/Meiji-U/CS/SE/Library</w:name>
<w:service rdf:resource="&site;/library/takeout"/>
<w:service rdf:resource="&site;/library/return"/> ・・・

</w:Agent>

<w:Form rdf:about="&site;/library/takeout">　・・・　</w:Form>
</rdf:RDF>

The Semantic Definitions of Forms
- An example of form definitions (part) -

<w:Form about="http://se.cs.meiji.ac.jp/library/takeout/">
<d:Title>take-out</d:Title>
<d:Description>A procedure for book take-out</d:Description>
<w:input>

<w:FormItem>
<w:name>usr</w:name>
<w:datatype resource="http://imc.org/vCard/3.0#FN"/>
<w:value resource="urn:userprofile:@user.name.fullname"/>
<w:help resource=" http://inside.se.cs.meiji.ac.jp/

library/takeout/help.html#usr "/>
</w:FormItem>

</w:input>
</w:Form>

An Example of a Request Message
- (a, ?x, ,) for a list of services -

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"
xmlns:w="http://wwhww.org/1.0/">

<w:Message rdf:about="">
<w:who>/Meiji-U/CS/SE/Library</w:who>
<w:what><w:query/></w:what>
</w:Message>

</rdf:RDF>

Application Development Environment,
M-base, for Back End

◆　Modeling process
・ The business logic by end-users of
　 business professionals or domain experts.
・ One solution

for enduser-initiative development :

“ A domain model ≡ A computation model ”
・ One task in a domain model corresponds to

one object in an object-oriented model.

“ Analysis ≡ Design ”

28

A UI builder

A modeling &
Simulation

tool

A script language

A
component

builder

A user interface

A dynamic model
A static model

Basic
components

Domain-
Specific

components

End-users System engineers

Framework of M-base

An application architecture

Modeling Procedure
◆ The typical procedure :

(1) Definitions of external specifications
(2) Construction of a domain model
(3) Refinement of user interfaces
(4) Simulation of behavior

◆ An example :
“ Tasks of a program chair

for an international
conference ”

The Domain Model
◆ By using the modeling tool :
・ Objects are defined by drag-and-drop

　　　　from the palette of icons.
・ A message is defined by drawing an arrow line.

Form Transformation

◆ Workflow vs. Web service :
・ Business objects → web services
・ The message flow → the form flow
・ Message transformation → form transformation
・ The form flow = web service integration :

Form A
Form a3

:

Form a2
Form a1Form

Trans.

32

Conclusions

◆ The Form-based approach for web services
by enduser-initiative application
development was proposed.

◆ The front end of the system is supported
by application frameworks and
multi-agents.

◆ The back end is supported
by domain modeling and business objects.

