

Abstract—It is expected that information technology (IT) will

contribute to resource saving and environmental preservation for a
sustainable society. For this purpose, application software is
required and then the fund is needed for its development by IT
professionals. However, the preparation of the fund must be difficult.
The end-user initiative development of application software is
indispensable for the solution of this dilemma. This paper describes
requirement definitions based on abstract forms in a method that
business professionals build applications by themselves. The
abstract forms are considered as interfaces of Web services based on
the simple concept that “one service = one form.” Therefore, the
business logic can be defined as the form transformation from input
forms into outputs form by business professionals.

Index Terms—EUC, form-to-form transformation, visual
tool, web service integration.

I. INTRODUCTION
 It is expected that information technology(IT) contributes

to saving resources and environmental preservation for a
sustainable society. For this purpose, application software is
required and then the fund is needed for its development by
IT professionals. However, the preparation of the fund is
difficult unless a profit is calculated over the development
cost. The end-user initiative development of application
software is indispensable for the solution of this dilemma.

For example, let’s consider a thrift store which sells
limited goods to limited customers in a local area. The
number of goods and the number of customers will increase if
business professionals develop the application for the web
site in which customers can register goods to be reused or
search the list of registered goods for their own use easily.

As for another example, let’s consider service counters
which exist everywhere. Although some service counters
already support the Internet usage, many service counters
have not yet done this because of lack of funds, not lack of
technologies. If business professionals at a service counter
can develop the application for a Web site, they will save
resources because of the paperless system and reducing the
cost of electricity by not using elevators when going to the
actual counter.

Furthermore, let’s consider online shopping. Some
customers may want to buy goods from the nearest shop to

This work was supported in part by KAKENHI of Grant-in-Aid for

Scientific Research.
T. Chusho and N. Yagi are with the Department of Computer Science,

School of Science and Technology, Meiji University, Kawasaki, 214-0033,
Japan.

K. Fujiwara is with the Department of Computer Science and Engineering,
Akita University, Akita, 010-8502, Japan.

reduce carbon dioxide (co2) emission in transportation. It
must be useful to open a Web site where you can search
several online shops for the specified goods and display the
information alongside the transportation distance. This
application may be developed by non-professionals of IT if
Web service integration of online shopping sites and an
online map service site is performed by using recent mash-up
technologies.

There are several approaches for the end-user initiative
development. That is, the UI-driven approach makes it
possible to develop applications for the UI-centered
front-end subsystems easily. It is strengthened by using
framework technologies. The model-driven approach makes
it possible to develop applications for the workflow-centered
back-end subsystems easily. It is strengthened by using a
visual modeling tool. Furthermore, the form-driven approach
must be easier than the aforementioned two approaches for
business professionals since they are familiar with forms in
daily work. It is strengthened by the form-to-form
transformation and Web service integration.

Terms for end-user computing (EUC) and papers on EUC
often came out in 80’s. Some papers describe definitions and
classifications of EUC [7] or the management of EUC [2]. A
recent paper summarizes the trends of end-user development
without IT professionals’ assistance [22].

There are some other works related to EUC. In the
programming field, the technologies for programming by
example (PBE) [16] were studied. The PBE implies that
some operations are automated after a user’s intention is
inferred from examples of operations. The non-programming
styles for various users including children and for various
domains including games were proposed. In the database
field, the example based database query languages [21] such
as QBE (Query-By-Example) were studied. QBE implies that
a DB query is executed by examples of concrete queries.
User-friendly inquiry languages were proposed in
comparison with SQL.

Our research target is different from these technologies
and is for business professionals and business domains. The
user’s intention is definitely defined as requirement
specifications without inference as business professionals
with domain expertise develop software which executes their
own jobs.

Therefore, this paper pays attention to a Web application
in which the user interface is a Web browser because most
users are familiar with how to use the Internet. Furthermore,
the three-tier architecture is supposed, which has been
popular recently. Generally, there are three approaches
corresponding to the user interface (UI), business logic and
database (DB). In our studies, application frameworks, visual

End-user Initiative Requirement Definitions
 Based on Web Service

Takeshi Chusho, Noriyuki Yagi, and Katsuya Fujiwara

modeling tools based on components and form
transformation tools for Web service integration were
developed for EUC.

This paper presents Web application development
technologies in Section 2, examples of applications in
Section 3, issues on EUC in Section 4 and abstract forms and
form transformation in Section 5.

II. WEB APPLICATION DEVELOPMENT

A. Basic Approaches
The approaches to the end-user initiative Web application

development methodologies based on the three-tier
architecture are classified into the three categories of
UI-driven, model-driven and data-driven processes by first
focusing on any one of the UI (user interface), the model
(business logic) or DB. These approaches are described in
this section.

B. A UI-Driven Approach
Recently, a UI-driven approach has emerged as Web

applications are increasing. A typical example of this
approach is the Struts framework [1] which is an open source
framework for building Web applications in Java. The visual
forms are defined first and then components for business
logic and access to the DB are defined. In this approach, it
seems to be easier for the end-user to define the UI in
comparison with definitions of the model or the DB.

For example, there are recent success stories on end-user
computing. One is a paper that the European Union’s
SmartGov project transforms public-sector employees into
developers of the government e-services used directly by the
public [15]. An intelligent e-forms development and
maintenance environment and associated framework are
delivered.

Another one is performed at the office of Nagasaki
prefecture in Japan [11]. The staff of business professionals
designed and described the user interfaces without IT
professionals’ assistances. Furthermore, while the staffs
specified requirements on business logic and DB tables, IT
professionals described documents of design specifications.
Based on these documents, the system was divided into
subsystems as the development cost of each subsystem was
less than about fifty thousands dollars and a small local IT
company could undertake the small-scale subsystem
development. As a result, the risk of ambiguous requirements
was omitted, the cost was reduced to about 50%, and
customer satisfaction based on usability etc. was improved.
This story suggests that the UI-driven approach makes it
possible for end-users to define the requirements of their own
software.

We have also been studying this approach for several years
[5]. The UI-driven approach is proposed for the front-end
subsystem based on CBSE (Component-Based Software
Engineering) [3], [8]. The systems are constructed by using
UI-centered frameworks [10] and agent technologies [13].
The effectiveness of the UI-driven process is confirmed
through experiences with the development of frameworks.

Business professionals define requirements for an
application to be developed by using the framework as

Figure 1. The browser for system definitions by end-users.

follows:
1. Service definitions : Services at the counter are defined.
2. Form definitions : Forms for these services are defined

with navigational information.
3. Registration : These form definitions are registered into

the corresponding servers.
An example of a browser defining the library system is

shown in Figure 1. The left part implies a hierarchical
directory. The right part implies definitions about the service
for taking out books.

Intelligent navigation by agents is implemented in XML.
The metadata for a window is described in an RDF (Resource
Description Framework) style. While forms are defined in
HTML in the conventional way, the semantics of forms are
defined in RDF style also.

However, this framework for a service counter does not
support the back-end subsystem with the workflow and DB.
When another framework for a reservation task such as a
room reservation system was developed, a visual tool for
defining the DB table easily was developed simultaneously.
Although end-users can use this tool, the target DB table is
limited to a simple reservation table.

C. A Model-Driven Approach
Around the 90's, object-oriented analysis and design

(OOAD) technologies came out and have become the major
methodologies. Some of them match the waterfall model and
others match the iterative and/or incremental development
process [12], [14]. In the recent OOAD methodologies, the
unified modeling language (UML) [20] is used for
definitions of the system model. OOAD is a model-driven
approach. In addition, UML2.0 requires more rigorous
definitions of models for automatic generation of program
codes based on the model-driven architecture (MDA) [19].

We have also been studying this approach for several years
[4]. The model-driven approach based on CBSE is proposed
for the back-end subsystem which the main part is a
workflow. Our solution is given as a formula of “a domain
model = a computation model.” This formula implies that one
task in a domain model of cooperative work corresponds to
one object in a computation model based on an

Figure 2. An example of the requirement specifications

verified by modeling and simulation.

object-oriented model. Therefore, it is not necessary for
end-users to convert a domain model into a computation
model with application architecture. The domain model is
considered as the requirement specifications. This process
requires necessarily the fixed architecture and ready-made
components such as business objects.

Our approach is different from most conventional
object-oriented analysis and/or design methods which need
defining an object model on static structure of objects prior to
a dynamic model on interactive behavior among objects. At
the first stage, the system behavior is expressed as a
message-driven model by using a visual modeling tool while
focusing on message flow and components. At the second
stage, a user interface is generated automatically and may be
customized if necessary. Then the transition diagram of user
interfaces is generated automatically and used for
confirmation of external specifications of the application.
Finally, the system behavior is verified by using a simulation
tool.

This component-based development process was
confirmed by feasibility study on a given problem of the
IPSJ(the Information Processing Society of Japan) sigRE
group. The problem is how to define requirement
specifications for a program chair’s job of an academic
conference. A dynamic model was constructed while
introducing eleven kinds of objects. These objects are
defined by drag-and-drop operations from the palette of icons.
A message between objects is defined by drawing an arrow
from the source object to the drain object.

In addition, branch conditions are described in rule
expressions. For example, in the “produce” method of the
CFP Production object, the following rules are described for
branch conditions:

- if Printer = yes then print;

- if CFP Distribution = yes then distribute;
Furthermore, simulation is executed for validation of the

requirement definitions as shown in Figure 2, both on the
domain model and on the sequence diagram, while
displaying traces of the message flows.

D. A Data-Driven Approach
As for a data-driven approach, a data-centered or

data-oriented approach was introduced in the 80's. In this
method, the data flow diagrams (DFD) are sometimes used
for a definition of the workflow. The data model is defined
with entity relationship diagrams (ERD). In many
mission-critical applications, the DB design is the most
important. Since data structures are more stable than business
logic, the data model is defined prior to business logic.

However, the design of a large-scale DB is difficult for
end-users. In our UI-driven approach and/or the
model-driven approach, it is supposed that DB components
are used. As for a small-scale DB, visual tools are introduced
for defining the DB tables.

III. TYPICAL APPLICATIONS
These technologies for end-user computing will be applied

to various applications for a sustainable society.
As for a Web application for a thrift store, the UI-driven

approach for a front-end subsystem and the model-driven
approach for a back-end subsystem are applied. If a Web site
for a thrift store can be opened easily by business
professionals, natural resources can be saved and the
opportunity to reuse them great.

As for a Web application for a service counter, framework
technologies are suitable because the domain expertise is
embedded into a framework which is prepared in advance.
As for the latest example, the framework for a reservation
system was developed and applied to a meeting room
reservation system for our department. This application is in
practical use. In comparison with the previous frameworks,
this framework uses the open source framework for building
Web applications, Struts. JavaServer Pages (JSP) are used for
dynamic Web pages since the current state of reservation
should be displayed. The system architecture is based on the
Struts framework. As a result, use of natural resources is
reduced by a paperless system, and the energy for elevators,
trains, cars, etc. is saved since it is not necessary to visit the
actual service counter.

 Furthermore, if an Internet shopping site for shopping
and a map site are combined using Web service integration,
clients can buy goods from the nearest shop and there will be
a reduction of CO2 emission usually in transportation.

IV. ISSUES ON END-USER COMPUTING
In our experiences, sometimes end-users needed IT

professionals’ assistance. It is difficult for end-users to
develop new components, to modify ready-made components
for complicated business logic and to implement user
interfaces in JSP.

However, if end-users can describe requirement
specifications, some IT professionals may continue

Figure 3: A service counter as a metaphor for Web service.

application development as volunteers or some IT companies
may undertake application development at a low cost.
Recently, the ratio of the requirement definitions cost to the
total cost on software development has been increasing since
the productivity of design, implementation and testing has
been improved by using various tools and object-oriented
platforms.

Furthermore, in the business world, the external
specifications of application software are recently considered
as services as shown in keywords such as ASP (Application
Service Provider), Web service, SOA (Service-Oriented
Architecture) and SaaS (Software as a Service) [9], [17], [18].
Our new approach to end-user computing is that end-users
develop Web applications by service integration for both the
front-end subsystem and the back-end subsystem because
end-users consider their applications as a level of service, not
as a level of software.

That is, the service counter is considered as a metaphor to
describe the interface between a service provider and a
service requester for Web services. Such a service counter is
not limited to the actual service counter in the real world. For
example, in a supply chain management system, data
exchange among related applications can be considered as
data exchange at the virtual service counter.

Generally, the service counter receives service requests
from clients as shown in Figure 3. Forms are considered as
the interface between them. That is, the following concept is
essential for our approach:

 ”One service = One form.”
The integration of some individual Web services is

considered as transformation from some input forms into
some output forms. Although most of these forms are not
visual forms, end-users can consider this form as a visual
form for the requirement specification. Such a form is called
an abstract form in this paper. Since end-users can consider
such Web service integration as the workflow with visual
forms which they are familiar with, IT skills are not required
of end-users.

Figure 4: Form transformation for Web service integration.

Furthermore, our previous two approaches are unified by

these concepts. The UI-driven approach with frameworks for
front-end subsystems is considered as the special case that a
part of abstract forms are actually visual forms for interaction
between the system and the external world. The
model-driven approach with visual modeling tools for
back-end subsystems is considered as the special case that the
message flow is used instead of the form flow as the
workflow. That is, cooperative work at an office is expressed
by using a form flow model with the abstract forms.

The remainder of this paper describes requirement
definitions by the abstract form and the form transformation
procedure from inputs to outputs.

V. ABSTRACT FORMS AND TRANSFORMATION

A. Form Transformation in XSLT
The best solution is that end-users can get application

software by form definitions and form-to-form
transformation definitions. An application which generates
individual examination schedules for each student has been
selected for applying our solutions to practical Web service
integration. Actually, the university supports the individual
portal sites for each student. The student gets the examination
schedule in PDF and the individual timetable for classes in
HTML. In our experiment, an actual examination schedule in
PDF can be transformed into an XML document manually.

The target application generates an individual examination
schedule for each student from the individual timetable for
classes and the examination schedule. The form
transformation is shown in Figure 4.

One input is the individual timetable for classes in HTML
which is extracted from the individual portal site for each
student. This document includes information about subjects
for each student, that is, subject names, instructor names and
class numbers. This HTML document is transformed into an
XML document by using the wrapping technology. The other
input is the examination schedule in XML, which includes
information about subject names, instructor names, dates and
periods, and room numbers. These two XML documents are
merged into the individual examination schedule in XML
format for each student.

This individual examination schedule in XML is
transformed into an HTML document which can be displayed
on the Web browser of each student. There are some
conventional tools used for this transformation. The XSLT

Figure 5. Form transformation by mapping.

stylesheet for this application is generated by using one of the
conventional tools.

The key technology of this system is the form-to-form
transformation from two XML documents into an XML
document. The system administrator of this application is not
an IT professional but a clerk in the university office. Such an
end-user does not have the ability to perform programming,
but needs to modify the system when the inputs change.

For the solution of this problem, basically, the procedure of
this application is described in a script language. Furthermore,
a visual tool supports the end-user. The system generates the
XML document as the output by extracting classes which are
included in the both input files. The early opinions on this
approach are described in detail in [6].

B. Form Transformation by Mapping
One solution to the problem of the form transformation in

XSLT is the form transformation by mapping from input
forms to output forms. The end-users do not need to learn
XML and XSLT technologies since they can define the form
transformation procedure by only mouse manipulations to
relate items in input forms to items in output forms. After the
definition of this procedure, the form transformation from
input forms into output forms is executed as shown in Figure
5.

For this study, a Web application for the reuse of
laboratory equipment was selected. In the School of Science
and Technology which we belong to, a lot of secondhand
equipment such as PCs are thrown away although many of
them can still be used. If the reuse site is open, the available
but unnecessary equipment is registered there and someone
can find and receive the reusable equipment easily. Therefore,
our end-user initiative requirement definitions method is
applied to such a system, ICRS (the Ikuta Campus Reuse
System).

Main rules for this system are as follows:
1. Users are limited to members who have mail addresses

which are managed by the university, that is, teachers,
officers, students etc. for security check.

2. The equipment to be given should be free for avoiding
illegal dealing of the university property.

3. The site administrator takes no responsibility for any
troubles since this site is supported by volunteers.

Main functions are described in the usecase diagram of
UML as shown in Figure 6. The user actor is the superclass of
both the donor actor and the donee actor. The relations
between actors and usecases are described as follows:

- The donor registers the unnecessary equipment.
- The donor replies to the donee.
- The donee receives the equipment for reuse.
- The donee requests the necessary equipment.

Figure 6. Usecases of the system for the reuse site.

Figure 7. UI transition and two types of FTFT.

- The donee inquires about the registered equipment.
- The user searches a list of the registered
 equipment.
- The user changes his/her password.
- The administrator registers a user.
- The administrator initiates the system.
The user interfaces (UI) and the UI transition diagram are

designed as shown in Figure 7. The business logic is
specified by the form-to-form transformation (FTFT) with
abstract forms. In this figure, the following two types of
FTFT are discriminated:

1. FTFT with DB accesses via abstract forms.
2. FTFT between visual forms
The first item is marked with the FTFT by a gray hexagon

and implies that a transformation between abstract forms or
between abstract forms and visual forms are performed
before moving onto the next user interface with a visual form.
On the other hand, the second item is marked with the FTFT
of a white hexagon and implies a transformation between
visual forms.

Figure 8 shows a part of form flows and form-to-form
transformations. The three forms of left-hand side are visual
forms for actual user interfaces corresponding to Login,
Menu and List windows. The four forms of the right-hand
side are abstract forms for end-users support, which are not
displayed visually at the application execution time. Such an
abstract form is used under construction of an application by

Figure 8. A part of form-to-form transformations and
database accesses.

end-users. M:N of FTFT implies the transformation from M
input forms to N output forms. First three transformations are
1:1 and the last transformation is 2:1.

The Login form is transformed into the abstract form of
‘Check’ and it is sent to the user management DB. Next, the
abstract form of ‘Response’ is transformed into the Menu
form for selection of the next operation from a display of a
list of the registered equipment, registration of unnecessary
equipment, search of registered equipment or password
change. If the user selects a display of a list of the registered
equipment, the menu form is transformed into the abstract
form of ‘Read’ and it is sent to the Item management DB.
Then two inputs of the Menu form and the Response form are
merged and transformed into the List form.

C. A Visual Tool for FTFT
A tool for defining the form-to-form transformation was

developed. The user interface was implemented in HTML
and JavaScript. The generated procedure in XML is sent to
the server and stored there. The interpreter of this procedure
in XML was implemented in Java.

Figure 9 shows examples of the form-to-form
transformation. The input form and the output form are
displayed on the left-hand side. The palette with buttons for
operation items is displayed on the right-hand side.
Whenever a column of forms or an operation item of the
palette is clicked, the order and the name of the clicked item
are displayed below for confirmation.

The transformation from the Login form into the Check
form in Figure 9 (a) is defined as follows:

1 Login.UserID
2 EQUAL
3 Check.UserID
4 INIT
5 Login.Password
6 EQUAL
7 Check.Password
8 INIT
The first four operations define that the value of the User ID

column in the input form is copied into the User ID column in
the output form while clicking the mouse button in order of

(a) Transformation from the Login form to a Check form

(b) Transformation from the Response form to a Menu
form

Figure 9. Examples of FTFT by using a visual tool.

{Login.UserID, =, Check.UserID, INIT}. The INIT

operation implies the initialization as the previous execution
result is not used. The following four operations define that
the value of the Password column in the input form is copied
into the Password column in the output form. This example is
very simple.

The transformation from the Response form into the Menu
form in Figure 9(b) is defined as follows:

1 Response.UserID
2 EQUAL
3 Menu.UserID
4 INIT
5 Response.Result
6 EQUAL
7 FUNCf
8 INIT
9 FUNCf
10 EQUAL
11 Menu.List
12 INIT
The first four operations define that the value of the User ID

column in the input form is copied into the User ID column in
the output form. Next, one of the functions of f, g and h is
used for complex business logic. That is, the following four
operations define that the value of the Result column in the
input form is the input of the f function while clicking the
mouse button in order of {Response.Result, =, f, INIT}. The
last four operations define that the output of the f function is

assigned to the Menu column in the output form likewise.
The body of the function, f, will be implemented in a

scripting language later. The variables of x, y and z are used
for temporary stores of execution results.

VI. CONCLUSION
The end-user initiative requirement definitions are

necessary for developing application software for a
sustainable society. This paper described the requirement
definition method based on abstract forms since business
professionals are familiar with visual forms. The business
logic can be defined as the form transformation from input
forms into output forms. Our experiments confirmed the
effectiveness of this approach.

REFERENCES
[1] The Apache Software Foundation, Struts,

http://struts.apache.org/
[2] J. C. Brancheau, and C. V. Brown, “The management of end-user

computing: status and directions,” ACM Computing Surveys, vol.25,
no.4, pp. 437–482, 1993.

[3] A. W. Brown(Ed.), Component-Based Software Engineering. IEEE
CS Press. 1996.

[4] T. Chusho, H. Ishigure, N. Konda, and T. Iwata, “Component-Based
Application Development on Architecture of a Model, UI and
Components,” Proc. APSEC2000, IEEE Computer Society,
pp.349-353, 2000.

[5] T. Chusho, H. Tsukui, and K. Fujiwara, “A Form-base and UI-Driven
Approach for Enduser-Initiative Development of Web Applications,”
Proc. Applied Computing 2004, IADIS, pp.II/11-II/16, 2004.

[6] T. Chusho, R. Yuasa, S. Nishida, and K. Fujiwara, “Web Service
Integration Based on Abstract Forms in XML for End-user Initiative
Development,” Proc. The 2007 IAENG International Conference on
Internet Computing and Web Services(ICICWS'07), pp.950-957, 2007.

[7] W. W. Cotterman, and K. Kumar, “User cube: a taxonomy of end
users,” Communications of the ACM, vol.32, no.11, pp. 1313-1320,
1989.

[8] I. Crnkovic, et al., “Specification, Implementation, and Deployment of
Components,” Communications of the ACM, vol. 45, no. 10, pp.35-40.
2002.

[9] A. Elfatatry, “Dealing with change: components versus services,”
Communications of the ACM, vol. 50, no. 8, pp. 35-39, 2007.

[10] M. Fayad, and D. C. Schmidt, (Ed.), “Object-Oriented Application
Frameworks,” Communications of the ACM, vol.39, no.10, pp. 32-87,
1997.

[11] N. Hirooka, “Nagasaki Prefecture,” (in Japanese), Nikkei Computer,
No.2007.7.25, 2005.

[12] J. Jacobson, et al., The Unified Software Development Process.
Addison-Wesley, 1999.

[13] N. R. Jennings, “An Agent-Based Approach for Building Complex
Software Systems,” Communications of the ACM, vol. 44, no. 4,
pp.35-41, 2001.

[14] C. Larman, Introduction to Object-Oriented Analysis and Design and
the Unified Process. Prentice-Hall, 2002.

[15] G. Lepouras, C. Vassilakis, C. Halatsis, and P. Georgiadis, “Domain
expert user development: the smartgov approach,” Communications of
the ACM, vol. 50, No. 9, pp. 79-83, 2007.

[16] H. Lieberman, (Ed.), “Special issue on Programming by example,”
Communications of the ACM, vol.43, no.3, pp.72-114, 2000.

[17] T. Margaria, (Ed.), “Guest Editors' Introduction:Service Is in the Eyes
of the Beholder,” IEEE Computer, vol. 40, no. 11, pp. 33-37, 2007.

[18] O. Nano, and A. Zisman, (Ed.), “Guest Editors' Introduction: Realizing
Service-Centric Software Systems,” IEEE Software, vol. 24, no. 6, pp.
28-30, 2007.

[19] OMG, OMG Model Driven Architecture,
http://www.omg.org/mda/

[20] OMG, Unified Modeling Language,
http://www.uml.org/

[21] G. Ozsoyoglu, and H. Wang, “Example-Based Graphical Database
Query Languages,” IEEE Computer, vol.26, no.5, pp.25-38, 1993.

[22] A. Sutcliffe, and N. Mehandjiev, (Guest Ed.), “End-user development,”
Communications of the ACM, vol.47, no.9, pp. 31-32, 2004.

