
Enduser-Initiative Application Development
based on Architecture of a Model, UI and Components

Takeshi CHUSHO, Naoyuki KONDA and Tomoaki IWATA

Department of Computer Science, Meiji University
1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan

e-mail : chusho@cs.meiji.ac.jp

Abstract

Explosive increase in end-user computing on
distributed systems requires that end-users develop
application software by themselves. One solution
is given as a formula of “a domain model≡ a
computation model.” This formula implies that one
task in a domain model of cooperative work corre-
sponds to one object in a computation model based
on an object-oriented model. Application develop-
ment environment, M-base1, supports this formula
for cooperative systems such as groupware and
workflow systems. The application architecture is
fixed as composed of a model, a user interface and
components. At the first stage, thesystem behav-
ior is expressed as a message-driven model by us-
ing a modeling tool while focusing on message flow
and components. The system behavior may be de-
fined recursively in the manner of stepwise refine-
ment. This implies that end-users define composite
components. At the second stage, auser interface
is generated automatically and may be customized
if necessary. Then transition diagrams of user in-
terfaces are generated automatically and used for
confirmation of external specifications of the appli-
cation. Finally, the system behavior is verified by
using a simulation tool. This component-based de-
velopment process is confirmed by feasibility study
on a given problem of IPSJ sigRE group.
Key words :

software architecture, componentware, soft-
ware development process, object-orientation, do-
main modeling, end-user computing

1Tomoaki IWATA is with Sony, Co. since Apr. 1999.

1. Introduction

Recently, computer networks for information
systems are rapidly spreading on trends of the In-
ternet and intranets. An increasing number of un-
trained end-users began interacting with comput-
ers. Then new software paradigms for such new
fields with explosive increase in application soft-
ware are required.

These end-users began using application pack-
ages not only for their individual task, but also for
their cooperative work such as workflow systems
and groupware[13]. When these application pack-
ages can not satisfy such end-users, they must cus-
tomize these packages or find new ones. Finally,
if there are no packages for their work which they
want to automate, they must develop their applica-
tions by themselves while being supported some-
times by system engineers. For such end-users, it
may be easy to understand a domain model, but it
must be difficult to convert the domain model into
a computation model which provides an architec-
ture of application software.

One solution for enduser-initiative application
development is given as a formula of “a domain
model≡ a computation model.” This formula im-
plies that one task in a domain model of coopera-
tive work corresponds to one object in a compu-
tation model based on an object-oriented model.
From this formula, the other formula of “anal-
ysis ≡ design” is derived since it is not neces-
sary to convert a domain model into a computa-
tion model with application architecture. This pro-
cess requires necessarily a fixed architecture and
ready-made components as business objects for
component-based development[3, 22, 24].

Application development environment, M-base,
supports these formulas for developing coopera-
tive systems such as groupware and workflow sys-
tems. The basic idea is based on an object-oriented

model since the model may satisfy these two for-
mulas. However, our approach is different from
most conventional object-oriented analysis and/or
design methods[11, 17] which need defining an ob-
ject model on static structure of objects prior to a
dynamic model on interactive behavior among ob-
jects.

Our component-based development process has
the following features:

- Application architecture is fixed.

- Behavior of a domain model is first constructed
[5, 7].

- Composite components are constructed recur-
sively.

That is, the application architecture is composed
of a model, a user interface and componentware.
At the first stage, the system behavior is expressed
as a message-driven model by using a modeling
tool while focusing on message flow and compo-
nents. The system behavior may be defined re-
cursively in the manner of stepwise refinement.
This implies that end-users define composite com-
ponents. At the second stage, a user interface is
generated automatically and may be customized if
necessary. Then transition diagrams of user in-
terfaces are generated automatically and used for
confirmation of external specifications of the ap-
plication. Finally, the system behavior is verified
by using a simulation tool. This component-based
development process is confirmed by feasibility
study on a given problem of IPSJ sigRE group.

In this paper, overview of M-base, feasibility
study, and discussions about modeling process, ap-
plication architecture and a component model, are
described in Sec. 3, Sec. 4 and Sec. 5 respectively.

2. Overview of M-base

2.1. Research Goals

A new approach and its support tools were de-
veloped for satisfying the following requirements
:

1. The target software is a distributed office in-
formation system for cooperative work such
as a workflow system and groupware.

2. The end-users are office workers who are pro-
fessionals of office work but are not profes-
sionals of information technologies.

3. The system designers are mainly the end-
users themselves although system engineers
may support the end-users.

4. The maintenance is performed by the end-
users themselves since the system specifica-
tions will modified frequently after running
and the system must be changed quickly.

2.2. Formal modeling process

This paper proposes the following paradigm
for software development based on object-oriented
modeling:

1. A dynamic model corresponding to system
behavior, is expressed in a message-driven
model.

2. A static model corresponding to both specifi-
cations and static relations of objects, is ex-
pressed in classes and its hierarchies.

This paradigm is called a two-layer model in
this paper. These two layers are discriminated each
other definitely in development process. In particu-
lar, domain-specific components, which are some-
times called as business objects, will contribute
to easiness of development because a dynamic
model with ready-made domain-specific compo-
nents need not to require the construction of the
corresponding static model. M-base promotes the
growth of componentware.

The modeling process in M-base is formalized
as shown in Figure 1. A domain model is com-
posed with an object-based analysis model(OAM)
and a class-based design model(CDM), where
these two models correspond to the dynamic model
and the static model of the aforementioned two-
layer model respectively. In the remainder of this
paper, “object” implies “instance” and is discrimi-
nated from “class.”

The object-based analysis model is expressed as
OAM = { O, M, T}. O denotes a set of objects. M
denotes a set of messages. Min and Mout are sub-
sets of M. That is, they denote a set of messages
from the outside and a set of messages to the out-
side respectively. T denotes a set of behavior as a
set of message transformation which implies that
an object receives a message and then sends a se-
quence of messages.

In short, a domain model for a distributed sys-
tem is constructed in accordance with a procedure
shown in Figure 1. That is, Min and Mout are con-
firmed first. Then, while examining message flow
processes, O, M and T are identified.

Figure 1. Modeling process based on
the two-layer model.

Next, if necessary, this model is refined into the
class-based design model as CDM ={MD, C, H},
where MD, C and H denote a set of methods, a
set of classes and a set of class hierarchies respec-
tively. External specification of each object is rep-
resented by a set of methods corresponding to mes-
sages which are received by the object. The for-
mal modeling process is described in the previous
paper[5, 7].

2.3. Metaphor-Base Modeling Process for
End-users

Our conceptual framework is based on the
object-oriented concepts. However, since end-
users are not familiar with these technologies,
practical development process has been provided
based on metaphors of an office as described be-
low.

Since workflow is essential in many cases of de-
veloping a distributed system, it is natural to model
the system behavior in message flow expressing
dynamic relationships among objects. Cooperative
work at an office is expressed by using a message-
driven model as follows:

1. A person or a group to whom one or more
tasks are assigned, is considered as an object.

2. Communication means such as forms,
memos, telephone calls, mails, verbal re-
quests, etc. between persons or groups, are
considered as messages.

3. Cooperation of persons or groups is per-
formed by message flow.

For support of such metaphor-base modeling,
each task is often personified, and then is consid-
ered as an object in M-base as follows:

1. If one task is assigned to a person in the real
world, an object corresponding to the person
is introduced for assignment of the task in the
domain model. This mapping is very natural
personification.

2. If one task is assigned to a group in the real
world, an object corresponding to the group
is introduced for assignment of the task in the
domain model. The group, that is, the task is
personified as if the task were assigned to one
person in the real world.

3. If some tasks are assigned to a person or a
group in the real world, an object correspond-
ing to each task is introduced. The task is per-
sonified as if each task were assigned to a dif-
ferent person in the real world.

In M-base, the principle of object decomposi-
tion is very simple as follows:

“Assign one task to an object.”
It must be easy for end-users to apply this principle
because they can assign each task to objects as if to
assign each task to each person under the condition
that the sufficient number of able persons exist.

2.4. Framework of Development Environ-
ment

Relations between an application architecture
and M-base are shown in Figure 2. An applica-
tion architecture to be developed by using M-base,
is composed of the following three parts:

1. A model

2. Componentware

3. A user interface

M-base provides the following tools :

1. A modeling and simulation tool

2. A user interface builder

3. A script language

4. A component builder

Figure 2. Application architecture (the
inner part) and support tools (the
outer part).

The model is a body for inherent process in the
application, and is partitioned into two parts. The
dynamic model is constructed by using the mod-
eling and simulation tool while referring to the
domain-specific components. If it is not necessary
to develop any new components, the application
architecture is composed simply of the dynamic
model, components and user interfaces.

If necessary, the static model is defined. Af-
ter the skeleton codes of the static model is gen-
erated automatically from the dynamic model, the
method definitions are refined by using the script
language. Basically, however, a static model is an
internal form which end-users need not to under-
stand.

The user interface is separated from the model
for a client/server or 3-tier system configuration,
and is constructed by using the user interface
builder.

If necessary, components are developed by us-
ing the component builder though system engi-
neers may support it.

The common platform plays an important role
in an open system including an distributed object
management.

3. Feasibility Study

3.1. Modeling Procedure

In this section, the following modeling proce-
dure is described while giving an example:

1. Definitions of external specifications

2. Construction of a dynamic model of a domain

3. Refinement of user interfaces

4. Simulation of behavior

We use a given example of “tasks of a program
chair for an international conference” which is de-
fined and used by the Working Group on Require-
ment Engineering, the Special Interest Group on
Software Engineering, Information Processing So-
ciety of Japan. The tasks of a program chair are
given as the eleven items.

The first lines of the first five items, which are
used as initial requirements in this section, are de-
scribed as follows:

(a) The schedule should be decided.

(b) CFP should be made and distributed.

(c) The program committee members should be
selected and registered.

(d) The submitted paper should be given the num-
ber to and be registered.

(e) The receipt of the paper should be acknowl-
edged to the author(s).

3.2. Definitions of External Specifications

The initial requirements are refined for defini-
tions of external specifications. Examples on the
five items are given as follows:

(a) Based on past experiences, the draft of the
schedule is generated by entering the first day
of a conference. This schedule can be modi-
fied.

(b) CFP is produced from a given prototype as a
HTML document by entering the content cor-
responding to each item in the prototype. A
plain text and a PDF file of CFP are automat-
ically produced from this HTML document
and distributed via email.

(c) The initial data of the program committee
members are entered manually into the com-
puter file.

(d) The initial data of the submitted paper are
entered manually into the computer file also.
For reduction of this task, the abstract of each
paper should be required to be sent by email.

(e) The receipt of the paper is sent to the au-
thor(s) automatically when the submitted pa-
per is registered into computer file.

Figure 3. An example of domain model constructed by using the modeling tool.

3.3. Construction of a Dynamic Model

The modeling and simulation tool is used for
constructing the dynamic model by mouse manip-
ulation, and is a kind of visual programming tool
which supports application development by con-
necting icons. Conventional tools, however, sup-
port only such typical procedures as retrieving data
from database, making a table of the data and
then displaying its bar chart. On the other hand,
M-base supports to express a domain model as
message-driven model first and to simulate the do-
main model for validation.

A dynamic model as shown in Figure 3 was con-
structed.

1. Identification of objects

Ten kinds of objects were introduced, that
is, scheduling, schedule, CFPproduction,
CFP distribution, PCmemberselection,
PC memberlist, paperreception, paperlist,
abstractreception, mailsending.

2. Identification of messages among those ob-
jects

For example, the CFPproduction object re-
ceives the “produce CFP” message and then
sends a “distribute CFP” message to the
CFP distribution object.

Objects are defined by drag-and-drop from the
palette of icons. A message between objects is de-

fined by drawing an arrow line from the source ob-
ject to the drain object.

Figure 4. An example of a composite
component defined recursively by us-
ing the modeling tool.

If an object is not given as a ready-made com-
ponent, the object is refined. For example, the
scheduling object was refined as shown in Fig-
ure 4. M-base supports the nested structure of
objects for recursive definition of user-defined
components by providing the four kinds of com-
ponents, namely, control components, UI com-
ponents, domain-specific components and other
primitive components. There are six control com-
ponents of start, repetition start, repetition end,
conditional branch, join and event occurrence.

There are four UI components of initial input, input
on demand, data display, and display-and-input.

3.4. Refinement of User Interfaces

After the instance-based domain model is con-
structed, the UI builder generates user interfaces
automatically by using the information to be dis-
played as items, which information is sent from
the modeling tool. Figure 5 shows an example of
a window for input of the opening date and output
of the draft schedule. The UI builder supports end-
users to customize it for improving user friendli-
ness if necessary.

Figure 5. An example of a user inter-
face generated automatically by the UI
builder.

Next the UI builder generates the transition dia-
grams of user interfaces as shown in Figure 6. An
end-user can validates external specification by us-
ing these diagrams. As a result, two errors of miss-
ing the necessary message flows were found and
specifications of five items were improved in our
experience.

3.5. Simulation of Behavior

Simulation is executed for validation of the ap-
plication, both on the domain model and on the
event trace diagram, while displaying trace of mes-
sage flow.

1. Selection of a scenario

In the simulation mode, one of methods to be
invoked from outside, is selected.

2. Execution of the scenario

Simulation is started by a click of the “start”
button. Message passing is executed one by
one while clicking the “next” button.

Figure 6. An example of a user inter-
face transition diagram generated au-
tomatically by the UI builder.

4. Discussions

4.1. Object-Oriented Modeling Process

For the past few years, the greatest attention in
software engineering has been focused on object-
oriented software development. This technol-
ogy seems to promote paradigm shift of software
for coming generation information systems. Es-
sential concepts of object-oriented technologies
came out around 1970 and were expanded into
programming methodologies[9]. Object-oriented
programming has been already used in practice
into various software fields, especially in middle-
ware such as graphical user interface builders and
distributed object management platforms. How-
ever, these successes in object-oriented program-
ming(OOP) do not necessarily imply successes in
object-oriented analysis(OOA) and design(OOD)
yet although many methodologies of OOA and
OOD came out around 1990[2, 8, 19, 21, 25].

Many of conventional OOA/OOD techniques
propose to identify objects or classes from the real
world at the first step. For example, some method-
ologies propose to consider nouns in problem spec-
ifications as objects and to consider verbs as meth-
ods. This idea may be suitable for large-scale
database-centered systems such as banking sys-
tems in which problem domain has been refined
enough and a data model has been defined also in
conventional systems. If not, too many objects and
methods will be selected in vain, especially in an
office information system.

This is because these techniques are based on a
data model rather than a dynamic behavior model
of the whole system and promote such design pro-
cess as objects are defined prior to their behavior
by using various notations of static relationships

between objects. Recent modeling techniques
such as UML (Unified Modeling Language)[1] and
VMT(Visual Modeling Techniques)[23] improve
the imbalance.

Although UML does not define design process,
it supports some kinds of diagrams for description
of a dynamic behavior model such as a sequence
diagram and collaboration diagram. These dia-
grams, however, are described based on classes.

In a distributed system for end-user computing,
however, the dynamic model at a macro level based
on instance objects, is required first since the do-
main model is specified while corresponding to ob-
jects with tasks of the real world. In M-base, mod-
eling and simulation of workflow are repeated first
for constructing the dynamic model based on the
very simple principle: “Assign one task to an ob-
ject.”

4.2. Application Architecture and compo-
nents

In general, software architecture is defined in
terms of a collection of components and interac-
tions among those components [20]. M-base sup-
ports application architecture as a model, com-
ponents and a user interface. That is, interac-
tions among components are expressed as a do-
main model, and the user interface is separated
from the domain model.

This architecture is similar to 3-tier architecture
of presentation, function and data but not the same.
A presentation layer corresponds to UI. A function
layer corresponds to a domain model and may in-
clude business components. A data layer implies a
DB management system. The difference is shown
by classifying components into three categories:

- GUI components

- Business components

- DB components

In M-base, GUI components are included in UI,
and Business components and DB components are
included in componentware.

The feature of the application architecture in M-
base, is a domain model which is expressed by
a message passing model, and promotes enduser-
initiative development of applications such as
workflow systems and groupware.

In construction of these distributed system, cor-
respondence of UIs and components to network
nodes can be decided based on a physical envi-
ronment because the application architecture in M-
base is specified from the logical view, not from
the physical view.

Furthermore, as an infrastructure of these dis-
tributed system, the ORB(Object Request Broker)
architecture such as CORBA is applicable because
the M-base engine, which controls execution of a
domain model by deciding the execution sequence
of components, supports network transparency of
components. In OMG, business objects are de-
fined as components of the information system that
directly represent the business model, and con-
struct an application with an application architec-
ture based on CORBA [4].

4.3. Component Model

In M-base, domain-specific components are
extracted easily from software architecture of a
developed application system since the domain
model is constructed based on an object-oriented
model. One of issues on finding components is a
granularity of a component. There are some ways
for enlargement of granularity as follows:

1. An application framework [10, 14]

2. Design patterns [12, 16, 18]

3. Composite objects [15]

The application framework provides software
architecture and a class library for developing an
application system in the specific domain. If a do-
main is limited, not only the architecture but also
implementation is almost fixed as the framework
which is composed of components. The frame-
work technology promotes enduser-initiative ap-
plication development by reducing hot spots to be
customized, as our experiences confirmed it [6].

The design pattern provides a set of classes
which collaborate each other for solving a typi-
cal design problem. Design patterns are micro-
architectures and smaller architectural elements
than frameworks [22].

A composite object is composed of several ob-
jects and provides a high level component. The
recursive definition of the component is essential
for large-scale applications, for top-down develop-
ment by stepwise refinement and/or for bottom-up
development by building block approach, as fol-
lows:

<A> ::= a set of<A> | <a>
where<a> is a primitive component and<A> is
an application or a composite component.

M-base supports the nested structure of ob-
jects for recursive construction of components as
an example has been shown in Figure 4 previ-
ously. However, the best case for end-users is that
they produce applications by a dynamic model,

UIs and ready-made domain-specific components
which are called as business objects.

JavaBeans supports the nested structure of ob-
jects by using a container. Communication among
beans is performed by events. M-base support this
event-based communication in order to use beans
as M-base components in future.

4.4. Implementation

Tools of M-base have been implemented by us-
ing Java under JDK1.1.7. The modeling and sim-
ulation tool, the UI builder and the M-base engine
are composed of 175 classes which program size
is 25,000 lines. Data which are passed from the
modeling and simulation tool to the UI builder, is
described in XML for extensibility.

5. Conclusions

One solution was given for two indispensable
requirements of new fields with explosive increase
in application software on distributed systems, that
is, “a domain model≡ a computation model”
and “analysis≡ design.” The practical enduser-
initiative development process was enabled by the
fixed architecture composed of a domain model,
UIs and components. The feasibility study con-
firmed this component-based process by using
tools of the environment, M-base, such as the mod-
eling tool and the UI builder.

Acknowledgment

This work on the modeling and simulation tool
and the script language has been supported in part
by Engineering Adventure Group Linkage Pro-
gram(EAGL) and by The Telecommunications Ad-
vancement Foundation (TAF) respectively. The au-
thors wish to express their gratitude to Mr. Katsuya
Fujiwara for icon designs.

References

[1] S. S. Alhir. UML. O’reilly, 1998.
[2] G. Booch. Object-oriented design with applica-

tions. Benjamin/Cummings, 1991.
[3] A. W. Brown(Ed.).Component-based software en-

gineering. IEEE CS Press, 1996.
[4] C. Casanave. Business-object architectures and

standards. OMG Business Object Domain Task
Force, 1998.

[5] T. Chusho. M-base : Object-based modeling of
application software as “domain model≡ a com-
putation model,” (in japanese).Information Pro-
cessing Society of Japan, SIG on Software Engi-
neering, 95(104-4):25–32, May 1995.

[6] T. Chusho and K. Fujiwara. wwhww : An applica-
tion framework of distributed systems for enduser-
initiative development. Proc. APSEC’98, pages
102–109, Dec. 1998.

[7] T. Chusho, M. Matsumoto, and Y. Konishi. M-
base:enduser-initiative application development
based on message flow and componentware.Proc.
COMPSAC98, pages 112–120, Aug. 1998.

[8] P. Coad and E. Yourdon.Object-oriented design.
Prentice-Hall, 1991.

[9] O. Dahl and C. A. Hoare.Hierarchical program
structures, Structured Programming. Academic
Press, 1972.

[10] M. Fayad and D. C. Schmidt. Object-oriented ap-
plication frameworks.Commun. ACM, 40(10):32–
38, Oct. 1997.

[11] R. G. Fichman and C. F. Kemerer. Object-oriented
and conventional analysis and design methodolo-
gies. IEEE Computer, 25(10):22–39, Oct. 1992.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[13] J. Grudin. Computer-supported cooperative work
: history and focus. IEEE Trans. Computer,
27(5):19–26, May 1994.

[14] R. E. Johnson. Frameworks = (components + pat-
terns).Commun. ACM, 40(10):39–42, 1997 Oct.

[15] D. Krieger and R. M. Adler. The emergence of
distributed component platforms.IEEE Computer,
31(3):43–53, Mar. 1998.

[16] S. J. Mellor and R. Johnson. Why explore object
methods, patterns, and architectures ?IEEE Soft-
ware, 14(1):27–30, Jan./Feb. 1997.

[17] D. E. Monarchi and G. I. Puhr. A research ty-
pology for object-oriented analysis and design.
Comm. ACM, 35(9):35–47, Sep. 1992.

[18] W. Pree.Design patterns for object-oriented soft-
ware development. Addison-Wesley, 1994.

[19] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen.Object-oriented modeling and
design. Prentice-Hall, 1991.

[20] M. Shaw and D. Garlan.Software architecture.
Prentice Hall, 1996.

[21] S. Shlaer and S. J. Mellor.Object-oriented systems
analysis : modeling the world in data. Prentice
Hall, 1988.

[22] C. Szyperski. Component Software. Addison-
Wesley, 1997.

[23] D. Tkach, W. Fang, and A. So.Visual modeling
technique. Addison-Wesley, 1996.

[24] J. Udell. Componentware.BYTE, pages 46–56,
May 1994.

[25] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.De-
signing object-oriented software. Prentice Hall,
1990.

